Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Virology ; 565: 29-37, 2022 01 02.
Article in English | MEDLINE | ID: covidwho-1475118

ABSTRACT

Bangladesh is the second-worst-affected country in South Asia by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The aim of this study is to examine genome sequences from Bangladesh from January 2021 to June 2021 in order to monitor the SARS-CoV-2 VOC and the clades or lineages that are prevalent in the country. Within the study timeframe, at least eight Nextstrain clades were found: 20A, 20B, 20C, 20H (Beta, V2), 20I (Alpha, V1), 20 J (Gamma, V3), 21A (Delta), 21D (Eta), and six GISAID clades: four main (G, GH, GR, GRY) and two minors (GV, O) with an introduction of VOC B.1.1.7/Alpha, B.1.351/Beta and B.1.617.2/Delta. The introduction and recent occurrence of VOCs with substantial alterations in the receptor binding site of spike protein (K417 N, K417T, L452R, T478K, E484K, S494P, N501Y) are of particular importance. Specifically, VOC B.1.617.2/Delta has surpassed all prior VOCs in Bangladesh, posing a challenge to the existing disease management.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Bangladesh/epidemiology , Binding Sites , COVID-19/epidemiology , Female , Genome, Viral/genetics , Humans , Male , Mutation , Phylogeny , Prevalence , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
2.
Microorganisms ; 9(5)2021 May 12.
Article in English | MEDLINE | ID: covidwho-1227044

ABSTRACT

Virus evolution and mutation analyses are crucial for tracing virus transmission, the potential variants, and other pathogenic determinants. Despite continuing circulation of the SARS-CoV-2, very limited studies have been conducted on genetic evolutionary analysis of the virus in Bangladesh. In this study, a total of 791 complete genome sequences of SARS-CoV-2 from Bangladesh deposited in the GISAID database during March 2020 to January 2021 were analyzed. Phylogenetic analysis revealed circulation of seven GISAID clades G, GH, GR, GRY, L, O, and S or five Nextstrain clades 20A, 20B, 20C, 19A, and 19B in the country during the study period. The GISAID clade GR or the Nextstrain clade 20B or lineage B.1.1.25 is predominant in Bangladesh and closely related to the sequences from India, USA, Canada, UK, and Italy. The GR clade or B.1.1.25 lineage is likely to be responsible for the widespread community transmission of SARS-CoV-2 in the country during the first wave of infection. Significant amino acid diversity was observed among Bangladeshi SARS-CoV-2 isolates, where a total of 1023 mutations were detected. In particular, the D614G mutation in the spike protein (S_D614G) was found in 97% of the sequences. However, the introduction of lineage B.1.1.7 (UK variant/S_N501Y) and S_E484K mutation in lineage B.1.1.25 in a few sequences reported in late December 2020 is of particular concern. The wide genomic diversity indicated multiple introductions of SARS-CoV-2 into Bangladesh through various routes. Therefore, a continuous and extensive genome sequence analysis would be necessary to understand the genomic epidemiology of SARS-CoV-2 in Bangladesh.

SELECTION OF CITATIONS
SEARCH DETAIL